Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of expert system (AI) that matches or goes beyond human cognitive capabilities throughout a vast array of cognitive tasks. This contrasts with narrow AI, which is limited to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that significantly goes beyond human cognitive abilities. AGI is considered one of the definitions of strong AI.
Creating AGI is a primary goal of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research study and advancement jobs across 37 nations. [4]
The timeline for accomplishing AGI remains a topic of continuous debate amongst scientists and experts. As of 2023, some argue that it might be possible in years or years; others keep it may take a century or longer; a minority believe it may never ever be achieved; and another minority declares that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed issues about the rapid development towards AGI, recommending it could be accomplished quicker than many anticipate. [7]
There is dispute on the precise meaning of AGI and regarding whether modern-day big language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have actually specified that alleviating the threat of human termination postured by AGI should be a global priority. [14] [15] Others discover the advancement of AGI to be too remote to provide such a threat. [16] [17]
Terminology
AGI is also known as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or general smart action. [21]
Some scholastic sources reserve the term "strong AI" for computer system programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) is able to fix one particular problem however lacks general cognitive capabilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as people. [a]
Related principles include artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical kind of AGI that is far more normally intelligent than human beings, [23] while the idea of transformative AI connects to AI having a large influence on society, for example, comparable to the farming or commercial revolution. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify five levels of AGI: emerging, competent, professional, virtuoso, and superhuman. For example, a proficient AGI is defined as an AI that surpasses 50% of proficient adults in a vast array of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified but with a threshold of 100%. They consider big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. One of the leading propositions is the Turing test. However, there are other well-known definitions, and some researchers disagree with the more popular methods. [b]
Intelligence qualities
Researchers generally hold that intelligence is required to do all of the following: [27]
reason, usage method, solve puzzles, and make judgments under uncertainty
represent knowledge, consisting of common sense knowledge
strategy
discover
- interact in natural language
- if needed, integrate these skills in conclusion of any given objective
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and wiki.tld-wars.space decision making) consider extra traits such as creativity (the ability to form novel psychological images and concepts) [28] and autonomy. [29]
Computer-based systems that display much of these abilities exist (e.g. see computational creativity, automated thinking, decision support system, robotic, evolutionary computation, intelligent agent). There is dispute about whether contemporary AI systems have them to an appropriate degree.
Physical qualities
Other capabilities are considered desirable in smart systems, as they may affect intelligence or help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and
- the capability to act (e.g. move and manipulate items, modification place to explore, and so on).
This includes the ability to identify and respond to danger. [31]
Although the ability to sense (e.g. see, hear, and so on) and the ability to act (e.g. relocation and control things, modification place to explore, etc) can be desirable for some smart systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that big language designs (LLMs) might currently be or become AGI. Even from a less optimistic viewpoint on LLMs, there is no company requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, provided it can process input (language) from the external world in location of human senses. This analysis lines up with the understanding that AGI has never been proscribed a specific physical embodiment and hence does not require a capacity for locomotion or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to verify human-level AGI have been considered, consisting of: [33] [34]
The concept of the test is that the machine has to attempt and pretend to be a guy, by responding to questions put to it, and it will just pass if the pretence is fairly persuading. A considerable part of a jury, who should not be skilled about machines, need to be taken in by the pretence. [37]
AI-complete problems
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would require to implement AGI, because the service is beyond the abilities of a purpose-specific algorithm. [47]
There are many problems that have actually been conjectured to require general intelligence to resolve as well as people. Examples include computer vision, natural language understanding, and dealing with unanticipated scenarios while fixing any real-world problem. [48] Even a particular task like translation needs a maker to read and compose in both languages, follow the author's argument (reason), comprehend the context (knowledge), and faithfully recreate the author's original intent (social intelligence). All of these issues require to be solved simultaneously in order to reach human-level device performance.
However, a number of these jobs can now be carried out by contemporary large language designs. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on numerous benchmarks for reading comprehension and visual thinking. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The first generation of AI scientists were encouraged that synthetic general intelligence was possible which it would exist in just a few decades. [51] AI pioneer Herbert A. Simon composed in 1965: "devices will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they could develop by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the task of making HAL 9000 as realistic as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the issue of developing 'artificial intelligence' will considerably be fixed". [54]
Several classical AI jobs, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it became apparent that scientists had actually grossly undervalued the trouble of the job. Funding companies became hesitant of AGI and put researchers under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "carry on a table talk". [58] In action to this and the success of specialist systems, both industry and federal government pumped cash into the field. [56] [59] However, confidence in AI spectacularly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never fulfilled. [60] For the second time in 20 years, AI scientists who predicted the imminent achievement of AGI had actually been mistaken. By the 1990s, AI scientists had a track record for making vain promises. They ended up being hesitant to make forecasts at all [d] and avoided reference of "human level" artificial intelligence for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI attained commercial success and scholastic respectability by focusing on particular sub-problems where AI can produce proven results and business applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now used thoroughly throughout the innovation industry, and research in this vein is greatly funded in both academia and market. As of 2018 [upgrade], advancement in this field was thought about an emerging pattern, and a mature stage was expected to be reached in more than ten years. [64]
At the millenium, lots of mainstream AI researchers [65] hoped that strong AI could be established by integrating programs that resolve various sub-problems. Hans Moravec wrote in 1988:
I am confident that this bottom-up route to expert system will one day satisfy the conventional top-down route over half way, ready to offer the real-world competence and the commonsense understanding that has been so frustratingly evasive in reasoning programs. Fully smart machines will result when the metaphorical golden spike is driven uniting the two efforts. [65]
However, even at the time, this was challenged. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:
The expectation has typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is really only one feasible route from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer will never be reached by this route (or vice versa) - nor is it clear why we should even attempt to reach such a level, given that it appears arriving would just amount to uprooting our signs from their intrinsic meanings (therefore simply decreasing ourselves to the functional equivalent of a programmable computer system). [66]
Modern synthetic general intelligence research
The term "artificial general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the ability to satisfy objectives in a vast array of environments". [68] This type of AGI, characterized by the capability to maximise a mathematical meaning of intelligence rather than show human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a number of visitor lecturers.
Since 2023 [update], a small number of computer system scientists are active in AGI research, and many add to a series of AGI conferences. However, increasingly more researchers are interested in open-ended learning, [76] [77] which is the concept of enabling AI to continuously find out and innovate like humans do.
Feasibility
Since 2023, the development and potential achievement of AGI stays a topic of extreme argument within the AI neighborhood. While conventional consensus held that AGI was a remote goal, current developments have actually led some researchers and industry figures to claim that early types of AGI might currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a guy can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century due to the fact that it would require "unforeseeable and essentially unpredictable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern-day computing and human-level expert system is as broad as the gulf between current space flight and practical faster-than-light spaceflight. [80]
A more obstacle is the absence of clearness in specifying what intelligence requires. Does it need consciousness? Must it display the capability to set goals as well as pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding needed? Does intelligence require clearly replicating the brain and its particular professors? Does it need feelings? [81]
Most AI researchers think strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, however that today level of progress is such that a date can not properly be predicted. [84] AI experts' views on the expediency of AGI wax and subside. Four surveys conducted in 2012 and 2013 suggested that the mean quote amongst specialists for when they would be 50% confident AGI would arrive was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% answered with "never" when asked the exact same question but with a 90% self-confidence rather. [85] [86] Further existing AGI progress considerations can be discovered above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong bias towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They examined 95 predictions made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists released an in-depth assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it might fairly be considered as an early (yet still incomplete) variation of an artificial general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of humans on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has actually already been accomplished with frontier designs. They wrote that unwillingness to this view comes from 4 main reasons: a "healthy apprehension about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "devotion to human (or biological) exceptionalism", or a "concern about the economic ramifications of AGI". [91]
2023 also marked the development of big multimodal designs (large language designs capable of processing or generating several techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of models that "invest more time thinking before they react". According to Mira Murati, this capability to believe before reacting represents a brand-new, extra paradigm. It improves design outputs by investing more computing power when generating the answer, whereas the model scaling paradigm enhances outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the company had attained AGI, specifying, "In my viewpoint, we have actually already accomplished AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than the majority of people at many jobs." He also addressed criticisms that big language designs (LLMs) merely follow predefined patterns, comparing their knowing procedure to the clinical approach of observing, hypothesizing, and verifying. These declarations have actually stimulated debate, as they count on a broad and unconventional meaning of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show exceptional flexibility, they may not totally satisfy this standard. Notably, Kazemi's comments came soon after OpenAI removed "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the business's tactical intentions. [95]
Timescales
Progress in expert system has actually historically gone through durations of quick progress separated by periods when development appeared to stop. [82] Ending each hiatus were essential advances in hardware, software application or both to develop area for additional progress. [82] [98] [99] For example, the hardware available in the twentieth century was not sufficient to execute deep knowing, which requires great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that price quotes of the time required before a truly versatile AGI is built vary from ten years to over a century. Since 2007 [update], the consensus in the AGI research study community appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI researchers have actually provided a broad range of opinions on whether development will be this fast. A 2012 meta-analysis of 95 such opinions found a bias towards forecasting that the onset of AGI would take place within 16-26 years for contemporary and historic forecasts alike. That paper has been criticized for how it categorized viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the conventional method utilized a weighted amount of scores from different pre-defined classifiers). [105] AlexNet was regarded as the preliminary ground-breaker of the present deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly offered and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old kid in first grade. A grownup pertains to about 100 usually. Similar tests were performed in 2014, with the IQ rating reaching a maximum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model capable of carrying out lots of varied tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to adhere to their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system efficient in performing more than 600 various tasks. [110]
In 2023, Microsoft Research released a research study on an early variation of OpenAI's GPT-4, contending that it displayed more general intelligence than previous AI designs and demonstrated human-level efficiency in jobs covering numerous domains, such as mathematics, coding, and law. This research stimulated a debate on whether GPT-4 might be considered an early, incomplete variation of synthetic general intelligence, emphasizing the requirement for more expedition and examination of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton specified that: [112]
The idea that this things could really get smarter than people - a couple of people thought that, [...] But most individuals thought it was way off. And I thought it was method off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly said that "The progress in the last few years has actually been pretty amazing", which he sees no reason it would decrease, expecting AGI within a decade and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within 5 years, AI would can passing any test a minimum of along with people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI employee, approximated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is considered the most promising path to AGI, [116] [117] whole brain emulation can function as an alternative approach. With whole brain simulation, a brain model is developed by scanning and mapping a biological brain in detail, and then copying and mimicing it on a computer system or another computational gadget. The simulation design should be adequately devoted to the original, so that it behaves in almost the exact same method as the initial brain. [118] Whole brain emulation is a type of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been talked about in expert system research [103] as a method to strong AI. Neuroimaging technologies that might deliver the required comprehensive understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will appear on a similar timescale to the computing power required to imitate it.
Early approximates
For low-level brain simulation, an extremely effective cluster of computers or GPUs would be required, offered the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, supporting by their adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a simple switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at different estimates for the hardware required to equal the human brain and adopted a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a measure utilized to rate existing supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was attained in 2022.) He utilized this figure to forecast the necessary hardware would be readily available sometime in between 2015 and 2025, if the rapid growth in computer system power at the time of composing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually established an especially comprehensive and openly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The artificial nerve cell model presumed by Kurzweil and used in many existing synthetic neural network implementations is basic compared to biological nerve cells. A brain simulation would likely have to record the in-depth cellular behaviour of biological nerve cells, presently comprehended only in broad summary. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would require computational powers several orders of magnitude bigger than Kurzweil's price quote. In addition, the price quotes do not account for glial cells, which are known to contribute in cognitive procedures. [125]
A fundamental criticism of the simulated brain method originates from embodied cognition theory which asserts that human personification is an important element of human intelligence and is necessary to ground meaning. [126] [127] If this theory is proper, any totally functional brain model will need to incorporate more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as a choice, however it is unknown whether this would be adequate.
Philosophical point of view
"Strong AI" as specified in approach
In 1980, philosopher John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between 2 hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "awareness".
Weak AI hypothesis: A synthetic intelligence system can (only) imitate it thinks and has a mind and consciousness.
The first one he called "strong" because it makes a stronger statement: it assumes something special has taken place to the device that goes beyond those capabilities that we can check. The behaviour of a "weak AI" maker would be exactly similar to a "strong AI" device, but the latter would likewise have subjective mindful experience. This usage is likewise typical in academic AI research study and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to imply "human level synthetic basic intelligence". [102] This is not the exact same as Searle's strong AI, unless it is presumed that consciousness is needed for human-level AGI. Academic theorists such as Searle do not think that is the case, and to most expert system scientists the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to understand if it really has mind - undoubtedly, there would be no other way to inform. For AI research study, Searle's "weak AI hypothesis" is equivalent to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have different significances, and some aspects play substantial functions in sci-fi and the principles of expert system:
Sentience (or "incredible consciousness"): The ability to "feel" understandings or feelings subjectively, as opposed to the capability to factor about perceptions. Some thinkers, such as David Chalmers, utilize the term "awareness" to refer specifically to phenomenal consciousness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience develops is understood as the difficult issue of consciousness. [133] Thomas Nagel described in 1974 that it "feels like" something to be mindful. If we are not conscious, then it doesn't feel like anything. Nagel uses the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had accomplished life, though this claim was commonly contested by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a different individual, specifically to be consciously familiar with one's own ideas. This is opposed to just being the "topic of one's believed"-an operating system or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the very same way it represents everything else)-but this is not what individuals typically mean when they utilize the term "self-awareness". [g]
These characteristics have a moral measurement. AI life would provide rise to issues of welfare and legal defense, similarly to animals. [136] Other aspects of consciousness associated to cognitive capabilities are likewise pertinent to the concept of AI rights. [137] Finding out how to integrate sophisticated AI with existing legal and social frameworks is an emerging issue. [138]
Benefits
AGI could have a variety of applications. If oriented towards such objectives, AGI might assist alleviate numerous issues on the planet such as hunger, poverty and health issues. [139]
AGI might improve performance and performance in a lot of jobs. For instance, in public health, AGI could speed up medical research study, especially versus cancer. [140] It could take care of the senior, [141] and equalize access to quick, premium medical diagnostics. It might provide fun, cheap and personalized education. [141] The need to work to subsist might end up being outdated if the wealth produced is correctly redistributed. [141] [142] This also raises the concern of the place of humans in a radically automated society.
AGI might also assist to make rational choices, and to expect and prevent disasters. It might likewise assist to reap the advantages of potentially catastrophic technologies such as nanotechnology or climate engineering, while preventing the associated risks. [143] If an AGI's primary goal is to prevent existential disasters such as human extinction (which could be hard if the Vulnerable World Hypothesis ends up being real), [144] it might take steps to considerably decrease the risks [143] while decreasing the impact of these steps on our quality of life.
Risks
Existential threats
AGI might represent multiple types of existential threat, which are threats that threaten "the early termination of Earth-originating smart life or the irreversible and extreme destruction of its potential for desirable future development". [145] The threat of human termination from AGI has actually been the subject of many disputes, but there is also the possibility that the development of AGI would result in a completely problematic future. Notably, it could be utilized to spread and protect the set of worths of whoever develops it. If humanity still has moral blind areas comparable to slavery in the past, AGI might irreversibly entrench it, avoiding ethical development. [146] Furthermore, AGI could assist in mass surveillance and brainwashing, which could be used to create a steady repressive around the world totalitarian regime. [147] [148] There is likewise a danger for the machines themselves. If makers that are sentient or otherwise worthwhile of ethical factor to consider are mass produced in the future, participating in a civilizational course that forever overlooks their welfare and interests could be an existential catastrophe. [149] [150] Considering just how much AGI could enhance mankind's future and aid minimize other existential risks, Toby Ord calls these existential risks "an argument for proceeding with due care", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI postures an existential threat for humans, and that this threat needs more attention, is questionable but has actually been endorsed in 2023 by numerous public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed extensive indifference:
So, facing possible futures of incalculable benefits and threats, the specialists are definitely doing whatever possible to make sure the very best outcome, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll get here in a couple of years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The possible fate of humanity has actually in some cases been compared to the fate of gorillas threatened by human activities. The contrast states that higher intelligence enabled humanity to dominate gorillas, which are now susceptible in manner ins which they could not have actually prepared for. As a result, the gorilla has actually ended up being a threatened species, not out of malice, however just as a collateral damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate humanity and that we ought to be careful not to anthropomorphize them and analyze their intents as we would for human beings. He stated that people will not be "wise sufficient to create super-intelligent machines, yet ridiculously silly to the point of providing it moronic objectives without any safeguards". [155] On the other side, the concept of instrumental merging recommends that almost whatever their goals, smart agents will have reasons to attempt to endure and get more power as intermediary actions to attaining these goals. Which this does not require having feelings. [156]
Many scholars who are concerned about existential danger advocate for more research into solving the "control problem" to respond to the concern: what kinds of safeguards, algorithms, or architectures can programmers carry out to maximise the possibility that their recursively-improving AI would continue to act in a friendly, instead of harmful, manner after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which could result in a race to the bottom of security precautions in order to launch products before rivals), [159] and using AI in weapon systems. [160]
The thesis that AI can pose existential threat also has detractors. Skeptics typically state that AGI is not likely in the short-term, or that concerns about AGI sidetrack from other concerns connected to existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for many individuals outside of the innovation industry, existing chatbots and LLMs are already perceived as though they were AGI, causing further misconception and fear. [162]
Skeptics often charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an illogical belief in a supreme God. [163] Some researchers think that the communication projects on AI existential risk by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulatory capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other industry leaders and scientists, released a joint declaration asserting that "Mitigating the threat of extinction from AI should be a global top priority along with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. workforce could have at least 10% of their work tasks impacted by the introduction of LLMs, while around 19% of workers may see at least 50% of their jobs affected". [166] [167] They consider office workers to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, ability to make decisions, to user interface with other computer tools, however likewise to control robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can enjoy a life of luxurious leisure if the machine-produced wealth is shared, or the majority of people can wind up miserably poor if the machine-owners effectively lobby versus wealth redistribution. So far, the pattern appears to be towards the second choice, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will need federal governments to adopt a universal standard income. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI effect
AI safety - Research area on making AI safe and helpful
AI positioning - AI conformance to the designated objective
A.I. Rising - 2018 film directed by Lazar Bodroža
Artificial intelligence
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General game playing - Ability of expert system to play various games
Generative artificial intelligence - AI system capable of producing content in reaction to triggers
Human Brain Project - Scientific research project
Intelligence amplification - Use of information technology to augment human intelligence (IA).
Machine principles - Moral behaviours of man-made devices.
Moravec's paradox.
Multi-task knowing - Solving multiple device learning tasks at the same time.
Neural scaling law - Statistical law in device learning.
Outline of synthetic intelligence - Overview of and topical guide to synthetic intelligence.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or form of expert system.
Transfer learning - Machine knowing method.
Loebner Prize - Annual AI competition.
Hardware for expert system - Hardware specially created and optimized for synthetic intelligence.
Weak artificial intelligence - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the article Chinese room.
^ AI founder John McCarthy writes: "we can not yet define in general what kinds of computational treatments we wish to call intelligent. " [26] (For a discussion of some meanings of intelligence utilized by synthetic intelligence scientists, see viewpoint of expert system.).
^ The Lighthill report specifically slammed AI's "grandiose objectives" and led the dismantling of AI research in England. [55] In the U.S., DARPA became determined to fund just "mission-oriented direct research, instead of basic undirected research". [56] [57] ^ As AI founder John McCarthy composes "it would be a great relief to the rest of the employees in AI if the creators of brand-new general formalisms would reveal their hopes in a more guarded type than has actually often held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As defined in a standard AI textbook: "The assertion that machines could perhaps act intelligently (or, perhaps much better, act as if they were intelligent) is called the 'weak AI' hypothesis by theorists, and the assertion that makers that do so are actually believing (as opposed to mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that synthetic basic intelligence advantages all of humanity.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is developing synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were recognized as being active in 2020.
^ a b c "AI timelines: What do experts in synthetic intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI leader Geoffrey Hinton gives up Google and warns of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad stars from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The genuine danger is not AI itself but the way we release it.
^ "Impressed by expert system? Experts say AGI is coming next, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential dangers to mankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that humanity needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the danger of extinction from AI ought to be a global priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals alert of danger of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating machines that can outthink us in basic methods.
^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no reason to fear AI as an existential hazard.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "maker intelligence with the full variety of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is changing our world - it is on everybody to ensure that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of intelligent characteristics is based on the subjects covered by significant AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reevaluated: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reassessed: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here's a list of challenging exams both AI versions have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software application engineers prevented the term synthetic intelligence for worry of being seen as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite progress in device intelligence, larsaluarna.se synthetic general intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not turn into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will artificial intelligence bring us utopia or damage?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A survey of professional opinion. In Fundamental issues of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022.
^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559.
^ Goertzel & Pennachin 2006.
^ a b c (Kurzweil 2005, p. 260).
^ a b c Goertzel 2007.
^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020.
^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190.
^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130.
^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - however a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019.
^ Grossman, Gary (3 September 2020). "We're going into the AI golden zone between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, but the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a happy medium in between narrow and general AI.
^ Quach, Katyanna. "A developer constructed an AI chatbot using GPT-3 that assisted a male speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021.
^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 tasks, from playing games to controlling robotics", TechCrunch, archived from the original on 16 June 2022, recovered 12 June 2022.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023.
^ Bove, Tristan. "A.I. might rival human intelligence in 'simply a couple of years,' says CEO of Google's main A.I. research study laboratory". Fortune. Retrieved 4 September 2024.
^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead".
^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to specify Artificial General Intelligence". Fast Company.
^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024.
^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023.
^ Sandberg & Boström 2008.
^ Drachman 2005.
^ a b Russell & Norvig 2003.
^ Moravec 1988, p. 61.
^ Moravec 1998.
^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study job maps the human brain". euractiv.
^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014.
^ de Vega, Glenberg & Graesser 2008. A wide variety of views in current research, all of which require grounding to some degree
^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer system may become possible". The Conversation. Retrieved 8 November 2023.
^ Searle 1980
^ For instance: Russell & Norvig 2003,
Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),.
MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),.
Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947.
^ though see Explainable synthetic intelligence for interest by the field about why a program behaves the way it does.
^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review.
^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024.
^ Nagel 1974.
^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024.
^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024.
^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal.
^ "Artificial General Intelligence - Do [es] the expense surpass benefits?". 23 August 2021. Retrieved 7 June 2023.
^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023.
^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023.
^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023.
^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, threats, methods (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2.
^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that people will destroy ourselves". Vox. Retrieved 8 June 2023.
^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security threat' to Australia, Senate questions states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023.
^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6.
^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9.
^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023.
^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023.
^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023.
^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014.
^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023.
^ "The interesting Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The fascinating Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023.
^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023.
^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI risk: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2.
^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023.
^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report warns". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023.
^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger presented however expert system can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023.
^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023.
^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015.
^ Titcomb, James (30 October 2023). "Big Tech is stoking worries over AI, alert researchers". The Telegraph. Retrieved 7 December 2023.
^ Davidson, John (30 October 2023). "Google Brain founder states huge tech is lying about AI extinction threat". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023.
^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early look at the labor market impact capacity of large language designs". OpenAI. Retrieved 7 June 2023.
^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees could see their jobs impacted by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023.
^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal standard income since 'in the future, manual labor will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023.
Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021.
Chalmers, David (1996 ), The Conscious Mind, Oxford University Press.
Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007.
Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3.
Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68.
Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114.
Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4.
Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013.
Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009.
Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, obtained 7 May 2011.
Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the original on 17 August 2007, recovered 30 August 2007.
Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5.
Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press.
Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper seminar, Science Research Council.
Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7.
McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer programs that can resolve issues and accomplish objectives worldwide along with human beings.
Moravec, Hans (1988 ), Mind Children, Harvard University Press
Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006
Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009
Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022.
Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4
NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, obtained 29 September 2007
Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007
Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2
Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, recovered 5 April 2009
Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, recovered 3 September 2020
Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row
Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4
Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1
Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, retrieved 4 September 2013 - via ResearchGate
Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, retrieved 31 August 2012
Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system simple enough to be reasonable will not be complicated enough to act smartly, while any system made complex enough to behave smartly will be too made complex to comprehend." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead easy foolish. They work, but they work by strength." (p. 198.).
Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010.
Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from devices. For biological creatures, reason and function originate from acting worldwide and experiencing the effects. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.).
Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013.
- Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who hope to get abundant from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't depend on governments driven by project financing contributions [from tech companies] to press back.' ... Marcus details the needs that residents must make from their federal governments and the tech business. They consist of transparency on how AI systems work; payment for people if their data [are] utilized to train LLMs (big language model) s and the right to approval to this usage; and the ability to hold tech companies liable for the damages they bring on by eliminating Section 230, imposing cash penalites, and passing stricter item liability laws ... Marcus likewise suggests ... that a new, AI-specific federal firm, comparable to the FDA, the FCC, or the FTC, may provide the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... develop [ing] a professional licensing program for engineers that would operate in a similar method to medical licenses, malpractice matches, and the Hippocratic oath in medication. 'What if, like physicians,' she asks ..., 'AI engineers also pledged to do no harm?'" (p. 46.).
Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in synthetic intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653.
Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stymied human beings for decades, exposes the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has revealed that although NLP (natural-language processing) designs can amazing feats, their abilities are quite limited by the quantity of context they get. This [...] could trigger [troubles] for scientists who wish to utilize them to do things such as examine ancient languages. In some cases, there are couple of historic records on long-gone civilizations to work as training data for such a function." (p. 82.).
Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to produce phony videos indistinguishable from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean practical videos produced utilizing artificial intelligence that actually deceive individuals, then they hardly exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, running in our media as counterfeited evidence. Their function much better resembles that of cartoons, particularly smutty ones." (p. 59.).
- Leffer, Lauren, "The Risks of Trusting AI: We must avoid humanizing machine-learning designs utilized in scientific research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81.
Lepore, Jill, "The Chit-Chatbot: bphomesteading.com Is talking with a device a conversation?", The New Yorker, 7 October 2024, pp. 12-16.
Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of artificial general intelligence are stymmied by the exact same old problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45.
McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009.
McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1.
Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007.
Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill.
Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and distributed at the 2007 Singularity Summit, San Francisco, California.
Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to overlook contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26.
Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test however showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require real humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed not able to and akropolistravel.com tried to rely on its vast database of ... facts obtained from online texts. "
- Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful but unreliable. Rules-based systems can not handle circumstances their programmers did not expect. Learning systems are limited by the information on which they were trained. AI failures have actually already led to tragedy. Advanced auto-pilot functions in automobiles, although they perform well in some circumstances, have driven vehicles without warning into trucks, concrete barriers, and parked cars and trucks. In the wrong scenario, AI systems go from supersmart to superdumb in an instant. When an opponent is attempting to manipulate and hack an AI system, the risks are even greater." (p. 140.).
Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, wiki.vifm.info and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267.
- Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new innovations but count on the timelelss human propensity to anthropomorphise." (p. 29.).
Williams, R. W.; Herrup, K.