Kurt Gödel Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.Anti-spam check. Do not fill this in! === Incompleteness theorems === {{blockquote|Kurt Gödel's achievement in modern logic is singular and monumental—indeed it is more than a monument, it is a landmark which will remain visible far in space and time. ... The subject of logic has certainly completely changed its nature and possibilities with Gödel's achievement.|[[John von Neumann]]<ref>{{Cite journal |last=Halmos |first=P.R. |title=The Legend of von Neumann |journal=The American Mathematical Monthly |volume=80 |number=4 |date=April 1973 |pages=382–94|doi=10.1080/00029890.1973.11993293 }}</ref>}} In 1930 Gödel attended the [[Second Conference on the Epistemology of the Exact Sciences]], held in [[Königsberg]], 5–7 September. Here he delivered his [[Gödel's incompleteness theorems|incompleteness theorems]].<ref name="Stadler">{{cite book |last1=Stadler |first1=Friedrich |title=The Vienna Circle: Studies in the Origins, Development, and Influence of Logical Empiricism |date=2015 |publisher=Springer |isbn=978-3-319-16561-5 |url=https://books.google.com/books?id=2rAlCQAAQBAJ&q=Erkenntnis+1930+Konigsberg&pg=PA161 |language=en}}</ref> Gödel published his incompleteness theorems in {{lang|de|Über formal unentscheidbare Sätze der {{lang|la|Principia Mathematica}} und verwandter Systeme}} (called in English "[[On Formally Undecidable Propositions of Principia Mathematica and Related Systems|On Formally Undecidable Propositions of {{lang|la|Principia Mathematica|nocat=y}} and Related Systems]]"). In that article, he proved for any [[recursion theory|computable]] [[axiomatic system]] that is powerful enough to describe the arithmetic of the [[natural numbers]] (e.g., the [[Peano axioms]] or [[ZFC|Zermelo–Fraenkel set theory with the axiom of choice]]), that: # If a (logical or axiomatic formal) [[formal system|system]] is [[omega-consistency|omega-consistent]], it cannot be [[completeness (logic)|syntactically complete]]. # The consistency of [[axiom]]s cannot be proved within their own [[axiomatic system|system]]. These theorems ended a half-century of attempts, beginning with the work of [[Gottlob Frege]] and culminating in {{lang|la|[[Principia Mathematica]]}} and [[Hilbert's Program]], to find a non-[[Relative consistency|relatively]] consistent axiomatization sufficient for number theory (that was to serve as the foundation for other fields of mathematics). The idea at the center of the incompleteness theorem is simple. Gödel constructed a formula that claims it is unprovable in a given formal system. If it were provable, it would be false. Thus there will always be at least one true but unprovable statement. That is, for any [[computably enumerable]] set of axioms for arithmetic (that is, a set that can in principle be printed out by an idealized computer with unlimited resources), there is a formula that is true of arithmetic, but not provable in that system. To make this precise, Gödel had to produce a method to encode (as natural numbers) statements, proofs, and the concept of provability; he did this by a process known as [[Gödel number]]ing. In his two-page paper {{lang|de|Zum intuitionistischen Aussagenkalkül}} (1932) Gödel refuted the finite-valuedness of [[intuitionistic logic]]. In the proof, he implicitly used what has later become known as [[intermediate logic|Gödel–Dummett intermediate logic]] (or [[t-norm fuzzy logic|Gödel fuzzy logic]]). Summary: Please note that all contributions to Christianpedia may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here. You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Christianpedia:Copyrights for details). Do not submit copyrighted work without permission! Cancel Editing help (opens in new window) Discuss this page