Mathematics Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.Anti-spam check. Do not fill this in! ==== Computing ==== {{Further|Theoretical computer science|Computational mathematics}} The rise of technology in the 20th century opened the way to a new science: [[computing]].{{Efn|[[Ada Lovelace]], in the 1840s, is known for having written the first computer program ever in collaboration with [[Charles Babbage]]}} This field is closely related to mathematics in several ways. [[Theoretical computer science]] is essentially mathematical in nature. Communication technologies apply branches of mathematics that may be very old (e.g., arithmetic), especially with respect to transmission security, in [[cryptography]] and [[coding theory]]. [[Discrete mathematics]] is useful in many areas of computer science, such as [[Computational complexity theory|complexity theory]], [[information theory]], [[graph theory]], and so on.{{Citation needed|date=December 2022}} In return, computing has also become essential for obtaining new results. This is a group of techniques known as [[experimental mathematics]], which is the use of ''experimentation'' to discover mathematical insights.<ref>{{Cite web |last1=Borwein |first1=J. |last2=Borwein |first2=P. |last3=Girgensohn |first3=R. |last4=Parnes |first4=S. |date=1996 |title=Conclusion |url=http://oldweb.cecm.sfu.ca/organics/vault/expmath/expmath/html/node16.html |url-status=dead |archive-url=https://web.archive.org/web/20080121081424/http://oldweb.cecm.sfu.ca/organics/vault/expmath/expmath/html/node16.html |archive-date=January 21, 2008 |website=oldweb.cecm.sfu.ca}}</ref> The most well-known example is the [[Four color theorem|four-color theorem]], which was proven in 1976 with the help of a computer. This revolutionized traditional mathematics, where the rule was that the mathematician should verify each part of the proof. In 1998, the [[Kepler conjecture]] on [[sphere packing]] seemed to also be partially proven by computer. An international team had since worked on writing a formal proof; it was finished (and verified) in 2015.<ref>{{cite journal |last1=Hales |first1=Thomas |last2=Adams |first2=Mark |last3=Bauer |first3=Gertrud |last4=Dang |first4=Tat Dat |last5=Harrison |first5=John |last6=Hoang |first6=Le Truong |last7=Kaliszyk |first7=Cezary |last8=Magron |first8=Victor |last9=Mclaughlin |first9=Sean |last10=Nguyen |first10=Tat Thang |last11=Nguyen |first11=Quang Truong |last12=Nipkow |first12=Tobias |last13=Obua |first13=Steven |last14=Pleso |first14=Joseph |last15=Rute |first15=Jason |last16=Solovyev |first16=Alexey |last17=Ta |first17=Thi Hoai An |last18=Tran |first18=Nam Trung |last19=Trieu |first19=Thi Diep |last20=Urban |first20=Josef |last21=Vu |first21=Ky |last22=Zumkeller |first22=Roland |title=A Formal Proof of the Kepler Conjecture |journal=Forum of Mathematics, Pi |date=2017 |volume=5 |page=e2 |doi=10.1017/fmp.2017.1 |s2cid=216912822 |url=https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC |language=en |issn=2050-5086 |access-date=February 25, 2023 |archive-date=December 4, 2020 |archive-url=https://web.archive.org/web/20201204053232/https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC |url-status=live |hdl=2066/176365 |hdl-access=free }}</ref> Once written formally, a proof can be verified using a program called a [[proof assistant]].<ref name=":1">{{Cite journal |last=Geuvers |first=H. |date=February 2009 |title=Proof assistants: History, ideas and future |url=https://www.ias.ac.in/article/fulltext/sadh/034/01/0003-0025 |journal=Sādhanā |volume=34 |pages=3–4 |doi=10.1007/s12046-009-0001-5 |s2cid=14827467 |doi-access=free |access-date=December 29, 2022 |archive-date=December 29, 2022 |archive-url=https://web.archive.org/web/20221229204107/https://www.ias.ac.in/article/fulltext/sadh/034/01/0003-0025 |url-status=live |hdl=2066/75958 |hdl-access=free }}</ref> These programs are useful in situations where one is uncertain about a proof's correctness.<ref name=":1" /> A major open problem in theoretical computer science is [[P versus NP problem|P versus NP]]. It is one of the seven [[Millennium Prize Problems]].<ref>{{Cite web |title=P versus NP problem {{!}} mathematics |url=https://www.britannica.com/science/P-versus-NP-problem |access-date=December 29, 2022 |website=Britannica |language=en |archive-date=December 6, 2022 |archive-url=https://web.archive.org/web/20221206044556/https://www.britannica.com/science/P-versus-NP-problem |url-status=live }}</ref> Summary: Please note that all contributions to Christianpedia may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here. You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Christianpedia:Copyrights for details). Do not submit copyrighted work without permission! Cancel Editing help (opens in new window) Discuss this page