Earth Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.Anti-spam check. Do not fill this in! == Natural history == {{Main|History of Earth|Timeline of natural history}} === Formation === {{Further|Early Earth|Hadean}} [[File:The Mysterious Case of the Disappearing Dust.jpg|thumb|upright=1.3|A 2012 artistic impression of the early [[Solar System]]'s [[protoplanetary disk]] from which Earth and other Solar System bodies were formed|center]] The oldest material found in the [[Solar System]] is dated to {{val|4.5682|0.0002|0.0004}} [[Gigaannum|Ga]] (billion years) ago.<ref name=bouvier_wadhwa2010 /> By {{val|4.54|0.04|u=Ga}} the primordial Earth had formed.<ref name="age_earth1" /> The bodies in [[Formation and evolution of the Solar System|the Solar System formed and evolved]] with the Sun. In theory, a [[solar nebula]] partitions a volume out of a [[molecular cloud]] by gravitational collapse, which begins to spin and flatten into a [[circumstellar disk]], and then the planets grow out of that disk with the Sun. A nebula contains gas, ice grains, and [[Cosmic dust|dust]] (including [[primordial nuclide]]s). According to [[nebular theory]], [[planetesimal]]s formed by [[accretion (astrophysics)|accretion]], with the primordial Earth being estimated as likely taking anywhere from 70 to 100 million years to form.<ref>{{cite journal|url=https://ntrs.nasa.gov/citations/20180002991|title=Ag Isotopic Evolution of the Mantle During Accretion: New Constraints from Pd and Ag Metal–Silicate Partitioning|journal=Differentiation: Building the Internal Architecture of Planets|last1=Righter|first1=K.|first2=M.|last2=Schonbachler|date=7 May 2018|volume=2084|page=4034|bibcode=2018LPICo2084.4034R|access-date=25 October 2020}}</ref> Estimates of the age of the Moon range from 4.5 Ga to significantly younger.<ref>{{Cite journal|last1=Tartèse|first1=Romain|last2=Anand|first2=Mahesh|last3=Gattacceca|first3=Jérôme|last4=Joy|first4=Katherine H.|author-link4=Katherine Joy|last5=Mortimer|first5=James I.|last6=Pernet-Fisher|first6=John F.|last7=Russell|first7=Sara|author7-link=Sara Russell|last8=Snape|first8=Joshua F.|last9=Weiss|first9=Benjamin P.|date=2019|title=Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples|journal=Space Science Reviews|language=en|volume=215|issue=8|page=54|doi=10.1007/s11214-019-0622-x|bibcode=2019SSRv..215...54T|issn=1572-9672|doi-access=free}}</ref> A [[giant impact hypothesis|leading hypothesis]] is that it was formed by accretion from material loosed from Earth after a [[Mars]]-sized object with about 10% of Earth's mass, named [[Theia (planet)|Theia]], collided with Earth.<ref name=reilly20091022 /> It hit Earth with a glancing blow and some of its mass merged with Earth.<ref name="canup_asphaug2001b" /><ref>{{cite journal|title=On the origin and composition of Theia: Constraints from new models of the Giant Impact|journal=Icarus|last1=Meier|first1=M. M. M.|last2=Reufer|first2=A.|last3=Wieler|first3=R.|date=4 August 2014|volume=242|page=5|doi=10.1016/j.icarus.2014.08.003|arxiv=1410.3819|bibcode=2014Icar..242..316M|s2cid=119226112}}</ref> Between approximately 4.1 and {{val|3.8|u=Ga}}, numerous [[Impact event|asteroid impacts]] during the [[Late Heavy Bombardment]] caused significant changes to the greater surface environment of the Moon and, by inference, to that of Earth.<ref>{{cite book|title=Encyclopedia of Astrobiology|first1=Philippe|last1= Claeys|first2=Alessandro|last2=Morbidelli|author-link2=Alessandro Morbidelli (astronomer)|editor-first1=Muriel|editor-last1= Gargaud|editor-first2=Prof Ricardo|editor-last2=Amils|editor-first3= José Cernicharo|editor-last3= Quintanilla|editor-first4= Henderson James (Jim) |editor-last4= Cleaves II|editor-first5=William M.|editor-last5=Irvine|editor-first6= Prof Daniele L.|editor-last6= Pinti|editor-first7= Michel|editor-last7= Viso|year= 2011|publisher=Springer Berlin Heidelberg|pages=909–912|doi=10.1007/978-3-642-11274-4_869|chapter=Late Heavy Bombardment|isbn= 978-3-642-11271-3}}</ref> === After formation === {{Main|Geological history of Earth}} [[Atmosphere of Earth|Earth's atmosphere]] and oceans were formed by [[volcanism|volcanic activity]] and [[outgassing]].<ref>{{cite web |url=https://www.lpi.usra.edu/education/timeline/gallery/slide_17.html |title=Earth's Early Atmosphere and Oceans |work=[[Lunar and Planetary Institute]] |publisher=[[Universities Space Research Association]] |access-date=27 June 2019}}</ref> Water vapor from these sources [[Origin of water on Earth|condensed]] into the oceans, augmented by water and ice from asteroids, [[protoplanet]]s, and [[comet]]s.<ref name="watersource" /> Sufficient water to fill the oceans may have been on Earth since it formed.<ref>{{Cite journal|last1=Piani|first1=Laurette|last2=Marrocchi|first2=Yves|last3=Rigaudier|first3=Thomas|last4=Vacher|first4=Lionel G.|last5=Thomassin|first5=Dorian|last6=Marty|first6=Bernard|display-authors=1|date=2020|title=Earth's water may have been inherited from material similar to enstatite chondrite meteorites|url=https://doi.org/10.1126/science.aba1948|journal=Science|language=en|volume=369|issue=6507|pages=1110–1113|doi=10.1126/science.aba1948|issn=0036-8075|pmid=32855337|bibcode=2020Sci...369.1110P|s2cid=221342529}}</ref> In this model, atmospheric [[greenhouse gas]]es kept the oceans from freezing when the newly forming Sun [[Faint young Sun paradox|had only 70%]] of its [[solar luminosity|current luminosity]].<ref name="asp2002" /> By {{val|3.5|u=Ga}}, [[Earth's magnetic field]] was established, which helped prevent the atmosphere from being stripped away by the [[solar wind]].<ref name="physorg20100304" /> [[File:NASA-EarlyEarth-PaleOrangeDot-20190802.jpg|thumb|upright=1.5|''Pale orange dot'', an artist's impression of [[Early Earth]], featuring its tinted orange [[methane]]-rich [[Prebiotic atmosphere|early atmosphere]]<ref name="Trainer Pavlov DeWitt Jimenez pp. 18035–18042">{{cite journal |last1=Trainer |first1=Melissa G. |last2=Pavlov |first2=Alexander A. |last3=DeWitt |first3=H. Langley |last4=Jimenez |first4=Jose L. |last5=McKay |first5=Christopher P. |last6=Toon |first6=Owen B. |last7=Tolbert |first7=Margaret A. |display-authors=1 |date=28 November 2006 |title=Organic haze on Titan and the early Earth |journal=Proceedings of the National Academy of Sciences |volume=103 |issue=48 |pages=18035–18042 |doi=10.1073/pnas.0608561103 |issn=0027-8424 |pmc=1838702 |pmid=17101962 |doi-access=free}}</ref>|center]] As the molten outer layer of Earth cooled it [[Phase transition|formed]] the first solid [[Earth's crust|crust]], which is thought to have been [[mafic]] in composition. The first [[continental crust]], which was more [[felsic]] in composition, formed by the partial melting of this mafic crust.<ref name="comp">{{cite journal |title=The composition of the Earth |year=1995 |url=https://www.sciencedirect.com/science/article/abs/pii/0009254194001404 |doi=10.1016/0009-2541(94)00140-4 |last1=McDonough |first1=W.F. |last2=Sun |first2=S.-s. |journal=Chemical Geology |volume=120 |issue=3–4 |pages=223–253 |bibcode=1995ChGeo.120..223M }}</ref> The presence of grains of the [[Hadean zircon|mineral zircon of Hadean age]] in [[Eoarchean]] [[sedimentary rock]]s suggests that at least some felsic crust existed as early as {{val|4.4|u=Ga}}, only {{val|140|u=[[Megaannum|Ma]]}} after Earth's formation.<ref name="science310_5756_1947" /> There are two main models of how this initial small volume of continental crust evolved to reach its current abundance:<ref name="williams_santosh2004" /> (1) a relatively steady growth up to the present day,<ref name="science164_1229" /> which is supported by the radiometric dating of continental crust globally and (2) an initial rapid growth in the volume of continental crust during the [[Archean]], forming the bulk of the continental crust that now exists,<ref name="ajes38_613" /><ref name="tp322_19" /> which is supported by isotopic evidence from [[hafnium]] in [[zircon]]s and [[neodymium]] in sedimentary rocks. The two models and the data that support them can be reconciled by large-scale [[crustal recycling|recycling of the continental crust]], particularly during the early stages of Earth's history.<ref name="Dhuime_etal_2018" /> New continental crust forms as a result of [[plate tectonics]], a process ultimately driven by the continuous loss of heat from Earth's interior. Over [[Geologic time scale|the period]] of hundreds of millions of years, tectonic forces have caused areas of continental crust to group together to form [[supercontinent]]s that have subsequently broken apart. At approximately {{val|750|u=Ma}}, one of the earliest known supercontinents, [[Rodinia]], began to break apart. The continents later recombined to form [[Pannotia]] at {{val|600|–|540|u=Ma}}, then finally [[Pangaea]], which also began to break apart at {{val|180|u=Ma}}.<ref name="bradley_2011" /> The most recent pattern of [[ice age]]s began about {{val|40|u=Ma}},<ref>{{cite news |url=https://www.amnh.org/explore/ology/earth/ask-a-scientist-about-our-environment/how-did-the-ice-age-end |title=When and how did the ice age end? Could another one start? |first=Ro |last=Kinzler |access-date=27 June 2019 |website=Ology|publisher=[[American Museum of Natural History]]}}</ref> and then intensified during the [[Pleistocene]] about {{val|3|u=Ma}}.<ref>{{cite journal |title=Causes of ice age intensification across the Mid-Pleistocene Transition |journal=[[Proc Natl Acad Sci U S A]] |date=12 December 2007 |volume=114 |issue=50 |pages=13114–13119 |doi=10.1073/pnas.1702143114 |pmc=5740680 |pmid=29180424 |first1=Thomas B. |last1=Chalk |first2=Mathis P. |last2=Hain |first3=Gavin L. |last3=Foster |first4=Eelco J. |last4=Rohling |first5=Philip F. |last5=Sexton |first6=Marcus P. S. |last6=Badger |first7=Soraya G. |last7=Cherry |first8=Adam P. |last8=Hasenfratz |first9=Gerald H. |last9=Haug |first10=Samuel L. |last10=Jaccard |first11=Alfredo |last11=Martínez-García |first12=Heiko |last12=Pälike |first13=Richard D. |last13=Pancost |first14=Paul A. |last14=Wilson |display-authors=1|doi-access=free }}</ref> [[High latitude|High-]] and [[middle latitude|middle-latitude]] regions have since undergone repeated cycles of glaciation and thaw, repeating about every 21,000, 41,000 and 100,000 years.<ref name="psc" /> The [[Last Glacial Period]], colloquially called the "last ice age", covered large parts of the continents, to the middle latitudes, in ice and ended about 11,700 years ago.<ref>{{cite journal |url=https://www.sciencedirect.com/science/article/abs/pii/S0277379110003197 |title=The potential of New Zealand kauri (Agathis australis) for testing the synchronicity of abrupt climate change during the Last Glacial Interval (60,000–11,700 years ago) |journal=Quaternary Science Reviews |publisher=Elsevier |last1=Turner |first1=Chris S.M. |display-authors=et al |year=2010 |doi=10.1016/j.quascirev.2010.08.017 |volume=29 |issue=27–28 |pages=3677–3682 |bibcode=2010QSRv...29.3677T |access-date=3 November 2020}}</ref> === Origin of life and evolution === {{Main|Abiogenesis{{!}}Origin of life|Earliest known life forms|History of life}} [[Chemical reaction]]s led to the first self-replicating molecules about four billion years ago. A half billion years later, the [[last universal common ancestor|last common ancestor of all current life]] arose.<ref name="sa282_6_90" /> The evolution of [[photosynthesis]] allowed the Sun's energy to be harvested directly by life forms. The resultant [[molecular oxygen]] ({{chem2|O2}}) accumulated in the atmosphere and due to interaction with ultraviolet solar radiation, formed a protective [[ozone layer]] ({{chem2|O3}}) in the upper atmosphere.<ref name="NYT-20131003">{{cite news |last=Zimmer |first=Carl |author-link=Carl Zimmer |title=Earth's Oxygen: A Mystery Easy to Take for Granted |url=https://www.nytimes.com/2013/10/03/science/earths-oxygen-a-mystery-easy-to-take-for-granted.html |archive-url=https://web.archive.org/web/20131003121909/http://www.nytimes.com/2013/10/03/science/earths-oxygen-a-mystery-easy-to-take-for-granted.html |archive-date=3 October 2013 |url-access=limited |date=3 October 2013 |work=[[The New York Times]] |access-date=3 October 2013}}</ref> The incorporation of smaller cells within larger ones resulted in the [[endosymbiotic theory|development of complex cells]] called [[eukaryote]]s.<ref name="jas22_3_225" /> True multicellular organisms formed as cells within [[Colony (biology)|colonies]] became increasingly specialized. Aided by the absorption of harmful [[ultraviolet radiation]] by the ozone layer, life colonized Earth's surface.<ref name="burton20021129" /> Among the earliest [[fossil]] evidence for life is [[microbial mat]] fossils found in 3.48 billion-year-old [[sandstone]] in [[Western Australia]],<ref>{{cite journal |last1=Noffke |first1=Nora |author-link=Nora Noffke |last2=Christian |first2=Daniel |last3=Wacey |first3=David |last4=Hazen |first4=Robert M. |author4-link=Robert Hazen |title=Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia |date=8 November 2013 |journal=[[Astrobiology (journal)|Astrobiology]] |doi=10.1089/ast.2013.1030 |bibcode=2013AsBio..13.1103N |pmid=24205812 |pmc=3870916 |volume=13 |issue=12 |pages=1103–1124}}</ref> [[Biogenic substance|biogenic]] [[graphite]] found in 3.7 billion-year-old [[metasediment]]ary rocks in [[Western Greenland]],<ref>{{cite journal |last1=Ohtomo |first1=Yoko |last2=Kakegawa |first2=Takeshi |last3=Ishida |first3=Akizumi |last4=Nagase |first4=Toshiro |last5=Rosing |first5=Minik T. |s2cid=54767854 |display-authors=3 |date=January 2014 |title=Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks |journal=[[Nature Geoscience]] |volume=7 |issue=1 |pages=25–28 |bibcode=2014NatGe...7...25O |doi=10.1038/ngeo2025 |issn=1752-0894}}</ref> and remains of [[biotic material]] found in 4.1 billion-year-old rocks in Western Australia.<ref>{{cite news |last=Borenstein |first=Seth |title=Hints of life on what was thought to be desolate early Earth |url=http://apnews.excite.com/article/20151019/us-sci--earliest_life-a400435d0d.html |date=19 October 2015 |work=[[Excite (web portal)|Excite]] |location=Yonkers, NY |publisher=[[Mindspark Interactive Network]] |agency=[[Associated Press]] |access-date=20 October 2015 |archive-url=https://web.archive.org/web/20160818063111/https://apnews.excite.com/article/20151019/us-sci--earliest_life-a400435d0d.html |archive-date=18 August 2016}}</ref><ref>{{cite journal |last1=Bell |first1=Elizabeth A. |last2=Boehnike |first2=Patrick |last3=Harrison |first3=T. Mark |author-link3=T. Mark Harrison |last4=Mao |first4=Wendy L. |author4-link=Wendy Mao |date=19 October 2015 |title=Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon |journal=Proc. Natl. Acad. Sci. U.S.A. |doi=10.1073/pnas.1517557112 |issn=1091-6490 |pmid=26483481 |pmc=4664351 |volume=112 |issue=47 |pages=14518–4521 |bibcode=2015PNAS..11214518B |doi-access=free}} Early edition, published online before print.</ref> The [[Earliest known life forms|earliest direct evidence of life]] on Earth is contained in 3.45 billion-year-old [[Australia (continent)|Australian]] rocks showing fossils of [[microorganism]]s.<ref>{{cite web |last=Tyrell |first=Kelly April |title=Oldest fossils ever found show life on Earth began before 3.5 billion years ago |url=https://news.wisc.edu/oldest-fossils-ever-found-show-life-on-earth-began-before-3-5-billion-years-ago/ |date=18 December 2017 |publisher=[[University of Wisconsin–Madison]] |access-date=18 December 2017}}</ref><ref>{{cite journal |last1=Schopf |first1=J. William |last2=Kitajima |first2=Kouki |last3=Spicuzza |first3=Michael J. |last4=Kudryavtsev |first4=Anatolly B. |last5=Valley |first5=John W. |title=SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions |year=2017 |journal=[[Proceedings of the National Academy of Sciences of the United States of America|PNAS]] |volume=115 |issue=1 |pages=53–58 |doi=10.1073/pnas.1718063115 |pmid=29255053 |pmc=5776830 |bibcode=2018PNAS..115...53S |doi-access=free}}</ref>[[File:Archean.png|thumb|An artist's impression of the [[Archean]], the [[Geologic time scale#Divisions of geologic time|eon]] after Earth's formation, featuring round [[stromatolite]]s, which are early oxygen-producing forms of life from billions of years ago. After the [[Late Heavy Bombardment]], [[Earth's crust]] had cooled, its water-rich barren [[planetary surface|surface]] is marked by [[continent]]s and [[volcano]]es, with the Moon still orbiting Earth half as far as it is today, appearing 2.8 times larger and producing strong [[tide]]s.<ref name="Lunar and Planetary Institute">{{cite web |title=Earth-Moon Dynamics |url=https://www.lpi.usra.edu/exploration/training/illustrations/earthMoon/ |access-date=2 September 2022 |website=Lunar and Planetary Institute}}</ref>|center|500x500px]]During the [[Neoproterozoic]], {{val|1000|to|539|u=Ma}}, much of Earth might have been covered in ice. This hypothesis has been termed "[[Snowball Earth]]", and it is of particular interest because it preceded the [[Cambrian explosion]], when multicellular life forms significantly increased in complexity.<ref>{{cite book|page=42|title=Climate Change and the Course of Global History|last1=Brooke|first1=John L.|year= 2014|publisher=Cambridge University Press|isbn=978-0-521-87164-8}}</ref><ref>{{cite book|page=56|title=Epigenetic Mechanisms of the Cambrian Explosion|last1=Cabej|first1=Nelson R.|year=2019|publisher=Elsevier Science|isbn=978-0-12-814312-4}}</ref> Following the Cambrian explosion, {{val|535|u=Ma}}, there have been at least five major [[Extinction event|mass extinctions]] and many minor ones.<ref name="Stanley_2016" /> Apart from the proposed current [[Holocene extinction]] event, the [[Cretaceous–Paleogene extinction event|most recent]] was {{val|66|u=Ma}}, when [[Chicxulub impactor|an asteroid impact]] triggered the extinction of non-avian dinosaurs and other large reptiles, but largely spared small animals such as insects, [[mammal]]s, lizards and birds. Mammalian life has diversified over the past {{val|66|u=Mys}}, and several million years ago, an African [[ape]] species gained the ability to stand upright.<ref name="gould1994" /><ref>{{Cite journal |last=Daver |first=G. |last2=Guy |first2=F. |last3=Mackaye |first3=H. T. |last4=Likius |first4=A. |last5=Boisserie |first5=J.-R. |last6=Moussa |first6=A. |last7=Pallas |first7=L. |last8=Vignaud |first8=P. |last9=Clarisse |first9=N. D. |date=2022 |title=Postcranial evidence of late Miocene hominin bipedalism in Chad |url=https://www.nature.com/articles/s41586-022-04901-z |journal=Nature |language=en |volume=609 |issue=7925 |pages=94–100 |doi=10.1038/s41586-022-04901-z |issn=1476-4687}}</ref> This facilitated tool use and encouraged communication that provided the nutrition and stimulation needed for a larger brain, which led to the [[Human evolution|evolution of humans]]. The [[History of agriculture|development of agriculture]], and then [[List of ancient civilizations|civilization]], led to humans having an [[Human impact on the environment|influence on Earth]] and the nature and quantity of other life forms that continues to this day.<ref name="bgsa119_1_140" /> === Future === {{Main|Future of Earth}} {{See also|Global catastrophic risk}} [[File:Red Giant Earth warm.jpg|thumb|upright=1.3|alt=A dark gray and red sphere representing the Earth lies against a black background to the right of an orange circular object representing the Sun|Conjectured illustration of the scorched Earth after the [[Sun]] has entered the [[red giant]] phase, about 5–7 billion years from now]] Earth's expected long-term future is tied to that of the Sun. Over the next {{val|1.1|u=billion years}}, solar luminosity will increase by 10%, and over the next {{val|3.5|u=billion years}} by 40%.<ref name="sun_future" /> Earth's increasing surface temperature will accelerate the [[carbonate–silicate cycle|inorganic carbon cycle]], reducing {{chem2|CO2}} concentration to levels lethally low for plants ({{val|10|ul=ppm}} for [[C4 carbon fixation|C4 photosynthesis]]) in approximately {{val|100|–|900|u=million years}}.<ref name="britt2000" /><ref name="pnas1_24_9576" /> The lack of vegetation will result in the loss of oxygen in the atmosphere, making animal life impossible.<ref name="ward_brownlee2002" /> Due to the increased luminosity, Earth's mean temperature may reach {{convert|100|C|F|0|abbr=}} in 1.5 billion years, and all ocean water will evaporate and be lost to space, which may trigger a [[runaway greenhouse effect]], within an estimated 1.6 to 3 billion years.<ref name="Mello-2020">{{Cite journal |last1=Mello |first1=Fernando de Sousa |last2=Friaça |first2=Amâncio César Santos |date=2020 |title=The end of life on Earth is not the end of the world: converging to an estimate of life span of the biosphere? |journal=International Journal of Astrobiology |language=en |volume=19 |issue=1 |pages=25–42 |doi=10.1017/S1473550419000120 |bibcode=2020IJAsB..19...25D |issn=1473-5504 |doi-access=free}}</ref> Even if the Sun were stable, a fraction of the water in the modern oceans will descend to the [[Mantle (geology)|mantle]], due to reduced steam venting from mid-ocean ridges.<ref name="Mello-2020" /><ref name="hess5_4_569" /> The Sun will [[stellar evolution|evolve]] to become a [[red giant]] in about {{val|5|u=billion years}}. Models predict that the Sun will expand to roughly {{convert|1|AU|e6km e6mi|lk=in|abbr=unit}}, about 250 times its present radius.<ref name="sun_future" /><ref name="sun_future_schroder" /> Earth's fate is less clear. As a red giant, the Sun will lose roughly 30% of its mass, so, without tidal effects, Earth will move to an orbit {{convert|1.7|AU|e6km e6mi|lk=off|abbr=unit}} from the Sun when the star reaches its maximum radius, otherwise, with tidal effects, it may enter the Sun's atmosphere and be vaporized.<ref name="sun_future" /> Summary: Please note that all contributions to Christianpedia may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here. You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Christianpedia:Copyrights for details). Do not submit copyrighted work without permission! Cancel Editing help (opens in new window) Discuss this page