Statistics Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.Anti-spam check. Do not fill this in! =====Interval estimation===== {{main|Interval estimation}} [[File:NYW-confidence-interval.svg|thumb|right|[[Confidence intervals]]: the red line is true value for the mean in this example, the blue lines are random confidence intervals for 100 realizations.]] Most studies only sample part of a population, so results do not fully represent the whole population. Any estimates obtained from the sample only approximate the population value. [[Confidence intervals]] allow statisticians to express how closely the sample estimate matches the true value in the whole population. Often they are expressed as 95% confidence intervals. Formally, a 95% confidence interval for a value is a range where, if the sampling and analysis were repeated under the same conditions (yielding a different dataset), the interval would include the true (population) value in 95% of all possible cases. This does ''not'' imply that the probability that the true value is in the confidence interval is 95%. From the [[frequentist inference|frequentist]] perspective, such a claim does not even make sense, as the true value is not a [[random variable]]. Either the true value is or is not within the given interval. However, it is true that, before any data are sampled and given a plan for how to construct the confidence interval, the probability is 95% that the yet-to-be-calculated interval will cover the true value: at this point, the limits of the interval are yet-to-be-observed [[random variable]]s. One approach that does yield an interval that can be interpreted as having a given probability of containing the true value is to use a [[credible interval]] from [[Bayesian statistics]]: this approach depends on a different way of [[Probability interpretations|interpreting what is meant by "probability"]], that is as a [[Bayesian probability]]. In principle confidence intervals can be symmetrical or asymmetrical. An interval can be asymmetrical because it works as lower or upper bound for a parameter (left-sided interval or right sided interval), but it can also be asymmetrical because the two sided interval is built violating symmetry around the estimate. Sometimes the bounds for a confidence interval are reached asymptotically and these are used to approximate the true bounds. Summary: Please note that all contributions to Christianpedia may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here. You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Christianpedia:Copyrights for details). Do not submit copyrighted work without permission! Cancel Editing help (opens in new window) Discuss this page