Mathematics Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.Anti-spam check. Do not fill this in! === Specific sciences === {{Essay-like|date=December 2022|subsection}} ==== Physics ==== {{Main|Relationship between mathematics and physics}} [[File:Pendule schema.gif|thumb|Diagram of a pendulum]] Mathematics and physics have influenced each other over their modern history. Modern physics uses mathematics abundantly,<ref>{{Cite book |last1=Wagh |first1=Sanjay Moreshwar |url={{GBurl|id=-DmfVjBUPksC|p=3}} |title=Essentials of Physics |last2=Deshpande |first2=Dilip Abasaheb |date=September 27, 2012 |publisher=PHI Learning Pvt. Ltd. |isbn=978-81-203-4642-0 |page=3 |language=en |access-date=January 3, 2023 }}</ref> and is also the motivation of major mathematical developments.<ref>{{Cite conference |last=Atiyah |first=Michael |author-link=Michael Atiyah |date=1990 |title=On the Work of Edward Witten |url=http://www.mathunion.org/ICM/ICM1990.1/Main/icm1990.1.0031.0036.ocr.pdf |conference=Proceedings of the International Congress of Mathematicians |page=31 |archive-url=https://web.archive.org/web/20130928095313/http://www.mathunion.org/ICM/ICM1990.1/Main/icm1990.1.0031.0036.ocr.pdf |archive-date=September 28, 2013 |access-date=December 29, 2022}}</ref> ==== Computing ==== {{Further|Theoretical computer science|Computational mathematics}} The rise of technology in the 20th century opened the way to a new science: [[computing]].{{Efn|[[Ada Lovelace]], in the 1840s, is known for having written the first computer program ever in collaboration with [[Charles Babbage]]}} This field is closely related to mathematics in several ways. [[Theoretical computer science]] is essentially mathematical in nature. Communication technologies apply branches of mathematics that may be very old (e.g., arithmetic), especially with respect to transmission security, in [[cryptography]] and [[coding theory]]. [[Discrete mathematics]] is useful in many areas of computer science, such as [[Computational complexity theory|complexity theory]], [[information theory]], [[graph theory]], and so on.{{Citation needed|date=December 2022}} In return, computing has also become essential for obtaining new results. This is a group of techniques known as [[experimental mathematics]], which is the use of ''experimentation'' to discover mathematical insights.<ref>{{Cite web |last1=Borwein |first1=J. |last2=Borwein |first2=P. |last3=Girgensohn |first3=R. |last4=Parnes |first4=S. |date=1996 |title=Conclusion |url=http://oldweb.cecm.sfu.ca/organics/vault/expmath/expmath/html/node16.html |url-status=dead |archive-url=https://web.archive.org/web/20080121081424/http://oldweb.cecm.sfu.ca/organics/vault/expmath/expmath/html/node16.html |archive-date=January 21, 2008 |website=oldweb.cecm.sfu.ca}}</ref> The most well-known example is the [[Four color theorem|four-color theorem]], which was proven in 1976 with the help of a computer. This revolutionized traditional mathematics, where the rule was that the mathematician should verify each part of the proof. In 1998, the [[Kepler conjecture]] on [[sphere packing]] seemed to also be partially proven by computer. An international team had since worked on writing a formal proof; it was finished (and verified) in 2015.<ref>{{cite journal |last1=Hales |first1=Thomas |last2=Adams |first2=Mark |last3=Bauer |first3=Gertrud |last4=Dang |first4=Tat Dat |last5=Harrison |first5=John |last6=Hoang |first6=Le Truong |last7=Kaliszyk |first7=Cezary |last8=Magron |first8=Victor |last9=Mclaughlin |first9=Sean |last10=Nguyen |first10=Tat Thang |last11=Nguyen |first11=Quang Truong |last12=Nipkow |first12=Tobias |last13=Obua |first13=Steven |last14=Pleso |first14=Joseph |last15=Rute |first15=Jason |last16=Solovyev |first16=Alexey |last17=Ta |first17=Thi Hoai An |last18=Tran |first18=Nam Trung |last19=Trieu |first19=Thi Diep |last20=Urban |first20=Josef |last21=Vu |first21=Ky |last22=Zumkeller |first22=Roland |title=A Formal Proof of the Kepler Conjecture |journal=Forum of Mathematics, Pi |date=2017 |volume=5 |page=e2 |doi=10.1017/fmp.2017.1 |s2cid=216912822 |url=https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC |language=en |issn=2050-5086 |access-date=February 25, 2023 |archive-date=December 4, 2020 |archive-url=https://web.archive.org/web/20201204053232/https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC |url-status=live |hdl=2066/176365 |hdl-access=free }}</ref> Once written formally, a proof can be verified using a program called a [[proof assistant]].<ref name=":1">{{Cite journal |last=Geuvers |first=H. |date=February 2009 |title=Proof assistants: History, ideas and future |url=https://www.ias.ac.in/article/fulltext/sadh/034/01/0003-0025 |journal=Sādhanā |volume=34 |pages=3–4 |doi=10.1007/s12046-009-0001-5 |s2cid=14827467 |doi-access=free |access-date=December 29, 2022 |archive-date=December 29, 2022 |archive-url=https://web.archive.org/web/20221229204107/https://www.ias.ac.in/article/fulltext/sadh/034/01/0003-0025 |url-status=live |hdl=2066/75958 |hdl-access=free }}</ref> These programs are useful in situations where one is uncertain about a proof's correctness.<ref name=":1" /> A major open problem in theoretical computer science is [[P versus NP problem|P versus NP]]. It is one of the seven [[Millennium Prize Problems]].<ref>{{Cite web |title=P versus NP problem {{!}} mathematics |url=https://www.britannica.com/science/P-versus-NP-problem |access-date=December 29, 2022 |website=Britannica |language=en |archive-date=December 6, 2022 |archive-url=https://web.archive.org/web/20221206044556/https://www.britannica.com/science/P-versus-NP-problem |url-status=live }}</ref> ==== Biology and chemistry ==== {{Main|Mathematical and theoretical biology|Mathematical chemistry}} [[File:Giant Pufferfish skin pattern detail.jpg|thumb|The skin of this [[giant pufferfish]] exhibits a [[Turing pattern]], which can be modeled by [[reaction–diffusion system]]s.]] [[Biology]] uses probability extensively – for example, in ecology or [[neurobiology]].<ref name=":2">{{Cite book |last=Millstein |first=Roberta |author-link=Roberta Millstein |title=The Oxford Handbook of Probability and Philosophy |date=September 8, 2016 |editor-last=Hájek |editor-first=Alan |pages=601–622 |chapter=Probability in Biology: The Case of Fitness |doi=10.1093/oxfordhb/9780199607617.013.27 |editor-last2=Hitchcock |editor-first2=Christopher |chapter-url=http://philsci-archive.pitt.edu/10901/1/Millstein-fitness-v2.pdf |access-date=December 29, 2022 |archive-date=March 7, 2023 |archive-url=https://web.archive.org/web/20230307054456/http://philsci-archive.pitt.edu/10901/1/Millstein-fitness-v2.pdf |url-status=live }}</ref> Most of the discussion of probability in biology, however, centers on the concept of [[evolutionary fitness]].<ref name=":2" /> Ecology heavily uses modeling to simulate [[population dynamics]],<ref name=":2" /><ref>See for example Anne Laurent, Roland Gamet, Jérôme Pantel, ''Tendances nouvelles en modélisation pour l'environnement, actes du congrès «Programme environnement, vie et sociétés»'' 15-17 janvier 1996, CNRS</ref> study ecosystems such as the predator-prey model, measure pollution diffusion,{{Sfn|Bouleau|1999|pp=282–283}} or to assess climate change.{{Sfn|Bouleau|1999|p=285}} The dynamics of a population can be modeled by coupled differential equations, such as the [[Lotka–Volterra equations]].<ref>{{Cite web |date=January 5, 2022 |title=1.4: The Lotka-Volterra Predator-Prey Model |url=https://math.libretexts.org/Bookshelves/Applied_Mathematics/Mathematical_Biology_(Chasnov)/01%3A_Population_Dynamics/1.04%3A_The_Lotka-Volterra_Predator-Prey_Model |access-date=December 29, 2022 |website=Mathematics LibreTexts |language=en |archive-date=December 29, 2022 |archive-url=https://web.archive.org/web/20221229204111/https://math.libretexts.org/Bookshelves/Applied_Mathematics/Mathematical_Biology_(Chasnov)/01:_Population_Dynamics/1.04:_The_Lotka-Volterra_Predator-Prey_Model |url-status=live }}</ref> However, there is the problem of [[model validation]]. This is particularly acute when the results of modeling influence political decisions; the existence of contradictory models could allow nations to choose the most favorable model.{{Sfn|Bouleau|1999|p=287}} Genotype evolution can be modeled with the [[Hardy-Weinberg principle]].{{Citation needed|date=December 2022}} [[Phylogeography]] uses probabilistic models.{{Citation needed|date=December 2022}} Medicine uses [[statistical hypothesis testing]], run on data from [[clinical trial]]s, to determine whether a new treatment works.{{Citation needed|date=December 2022}} Since the start of the 20th century, chemistry has used computing to model molecules in three dimensions. It turns out that the form of [[macromolecules]] in biology is variable and determines the action. Such modeling uses Euclidean geometry; neighboring atoms form a [[polyhedron]] whose distances and angles are fixed by the laws of interaction.{{Citation needed|date=December 2022}} ==== Earth sciences ==== {{Main|Geomathematics}} [[Structural geology]] and climatology use probabilistic models to predict the risk of natural catastrophes.{{Citation needed|date=December 2022}} Similarly, [[meteorology]], [[oceanography]], and [[planetology]] also use mathematics due to their heavy use of models.{{Citation needed|date=December 2022}} ==== Social sciences ==== {{Further|Mathematical economics|Historical dynamics}} Areas of mathematics used in the social sciences include probability/statistics and differential equations. These are used in linguistics, [[economics]], [[sociology]],<ref>{{Cite journal |last=Edling |first=Christofer R. |date=2002 |title=Mathematics in Sociology |url=https://www.annualreviews.org/doi/10.1146/annurev.soc.28.110601.140942 |journal=Annual Review of Sociology |language=en |volume=28 |issue=1 |pages=197–220 |doi=10.1146/annurev.soc.28.110601.140942 |issn=0360-0572}}</ref> and [[psychology]].<ref>{{Citation |last=Batchelder |first=William H. |title=Mathematical Psychology: History |date=2015-01-01 |url=https://www.sciencedirect.com/science/article/pii/B978008097086843059X |encyclopedia=International Encyclopedia of the Social & Behavioral Sciences (Second Edition) |pages=808–815 |editor-last=Wright |editor-first=James D. |access-date=2023-09-30 |place=Oxford |publisher=Elsevier |isbn=978-0-08-097087-5}}</ref> [[File:Supply-demand-equilibrium.svg|thumb|[[Supply and demand|Supply and demand curves]], like this one, are a staple of mathematical economics.]] The fundamental postulate of mathematical economics is that of the rational individual actor – ''[[Homo economicus]]'' ({{Literal translation|economic man}}).<ref name=":3">{{Cite book |last=Zak |first=Paul J. |url={{GBurl|id=6QrvmNo2qD4C|p=158}} |title=Moral Markets: The Critical Role of Values in the Economy |date=2010 |page=158 |publisher=Princeton University Press |isbn=978-1-4008-3736-6 |language=en |access-date=January 3, 2023 }}</ref> In this model, the individual seeks to maximize their [[rational choice theory|self-interest]],<ref name=":3" /> and always makes optimal choices using [[perfect information]].<ref name=":4">{{Cite web |last=Kim |first=Oliver W. |date=May 29, 2014 |title=Meet Homo Economicus |url=https://www.thecrimson.com/column/homo-economicus/article/2014/9/19/Harvard-homo-economicus-fiction/ |access-date=December 29, 2022 |website=The Harvard Crimson |archive-date=December 29, 2022 |archive-url=https://web.archive.org/web/20221229204106/https://www.thecrimson.com/column/homo-economicus/article/2014/9/19/Harvard-homo-economicus-fiction/ |url-status=live }}</ref>{{Better source needed|reason=this is an opinion essay, not a scholarly work|date=December 2022}} This atomistic view of economics allows it to relatively easily mathematize its thinking, because individual [[calculations]] are transposed into mathematical calculations. Such mathematical modeling allows one to probe economic mechanisms which would be difficult to discover by a "literary" analysis.{{Citation needed|date=December 2022}} For example, explanations of [[economic cycles]] are not trivial. Without mathematical modeling, it is hard to go beyond statistical observations or unproven speculation.{{Citation needed|date=December 2022}} However, many people have rejected or criticized the concept of ''Homo economicus''.<ref name=":4" />{{Better source needed|reason=this is an opinion essay, not a scholarly work|date=December 2022}} Economists note that real people have limited information, make poor choices and care about fairness, altruism, not just personal gain.<ref name=":4" />{{Better source needed|reason=this is an opinion essay, not a scholarly work|date=December 2022}} At the start of the 20th century, there was a development to express historical movements in formulas. In 1922, [[Nikolai Kondratiev]] discerned the ~50-year-long [[Kondratiev cycle]], which explains phases of economic growth or crisis.<ref>{{Cite web |title=Kondratiev, Nikolai Dmitrievich {{!}} Encyclopedia.com |url=https://www.encyclopedia.com/history/encyclopedias-almanacs-transcripts-and-maps/kondratiev-nikolai-dmitrievich |access-date=December 29, 2022 |website=www.encyclopedia.com |archive-date=July 1, 2016 |archive-url=https://web.archive.org/web/20160701224009/http://www.encyclopedia.com/doc/1G2-3404100667.html |url-status=live }}</ref> Towards the end of the 19th century, {{Ill|Nicolas-Remi Brück|fr}} and {{Ill|Charles Henri Lagrange|fr}} extended their analysis into [[geopolitics]].<ref>{{Cite web|url=https://onlinebooks.library.upenn.edu/webbin/book/lookupid?key=ha010090244#:~:text=##+Math%C3%A9matique+de+l'histoire,org%E3%80%91|title=Mathématique de l'histoire-géometrie et cinématique. Lois de Brück. Chronologie géodésique de la Bible., by Charles LAGRANGE et al. | The Online Books Page|website=onlinebooks.library.upenn.edu}}</ref> [[Peter Turchin]] has worked on developing [[cliodynamics]] since the 1990s.<ref>{{Cite web |title=Cliodynamics: a science for predicting the future |url=https://www.zdnet.com/article/cliodynamics-a-science-for-predicting-the-future/ |access-date=December 29, 2022 |website=ZDNET |language=en |archive-date=December 29, 2022 |archive-url=https://web.archive.org/web/20221229204104/https://www.zdnet.com/article/cliodynamics-a-science-for-predicting-the-future/ |url-status=live }}</ref> Even so, mathematization of the social sciences is not without danger. In the controversial book ''[[Fashionable Nonsense]]'' (1997), [[Alan Sokal|Sokal]] and [[Jean Bricmont|Bricmont]] denounced the unfounded or abusive use of scientific terminology, particularly from mathematics or physics, in the social sciences.<ref>{{cite book|last=Sokal|first=Alan|url=https://archive.org/details/fashionablenonse00soka|title=Fashionable Nonsense|author2=Jean Bricmont|publisher=Picador|year=1998|isbn=978-0-312-19545-8|location=New York|oclc=39605994|author-link=Alan Sokal|author2-link=Jean Bricmont}}</ref> The study of [[complex systems]] (evolution of unemployment, business capital, demographic evolution of a population, etc.) uses mathematical knowledge. However, the choice of counting criteria, particularly for unemployment, or of models, can be subject to controversy.{{Citation needed|date=December 2022}} Summary: Please note that all contributions to Christianpedia may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here. You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Christianpedia:Copyrights for details). Do not submit copyrighted work without permission! Cancel Editing help (opens in new window) Discuss this page