Statistics Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.Anti-spam check. Do not fill this in! =====Null hypothesis and alternative hypothesis===== Interpretation of statistical information can often involve the development of a [[null hypothesis]] which is usually (but not necessarily) that no relationship exists among variables or that no change occurred over time.<ref>{{cite book | last = Everitt | first = Brian | title = The Cambridge Dictionary of Statistics | publisher = Cambridge University Press | location = Cambridge, UK New York | year = 1998 | isbn = 0521593468 | url = https://archive.org/details/cambridgediction00ever_0 }}</ref><ref>{{cite web |url=http://www.yourstatsguru.com/epar/rp-reviewed/cohen1994/ |title=Cohen (1994) The Earth Is Round (p < .05) |publisher=YourStatsGuru.com |access-date=2015-07-20 |archive-date=2015-09-05 |archive-url=https://web.archive.org/web/20150905081658/http://www.yourstatsguru.com/epar/rp-reviewed/cohen1994/ |url-status=live }}</ref> The best illustration for a novice is the predicament encountered by a criminal trial. The null hypothesis, H<sub>0</sub>, asserts that the defendant is innocent, whereas the alternative hypothesis, H<sub>1</sub>, asserts that the defendant is guilty. The indictment comes because of suspicion of the guilt. The H<sub>0</sub> (status quo) stands in opposition to H<sub>1</sub> and is maintained unless H<sub>1</sub> is supported by evidence "beyond a reasonable doubt". However, "failure to reject H<sub>0</sub>" in this case does not imply innocence, but merely that the evidence was insufficient to convict. So the jury does not necessarily ''accept'' H<sub>0</sub> but ''fails to reject'' H<sub>0</sub>. While one can not "prove" a null hypothesis, one can test how close it is to being true with a [[Statistical power|power test]], which tests for [[type II error]]s. What [[statisticians]] call an [[alternative hypothesis]] is simply a hypothesis that contradicts the null hypothesis. Summary: Please note that all contributions to Christianpedia may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here. You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Christianpedia:Copyrights for details). Do not submit copyrighted work without permission! Cancel Editing help (opens in new window) Discuss this page