Statistics Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.Anti-spam check. Do not fill this in! =====Statistics, estimators and pivotal quantities===== Consider [[Independent identically distributed|independent identically distributed (IID) random variables]] with a given [[probability distribution]]: standard [[statistical inference]] and [[estimation theory]] defines a [[random sample]] as the [[random vector]] given by the [[column vector]] of these IID variables.<ref name=Piazza>Piazza Elio, Probabilità e Statistica, Esculapio 2007</ref> The [[Statistical population|population]] being examined is described by a probability distribution that may have unknown parameters. A statistic is a random variable that is a function of the random sample, but {{em|not a function of unknown parameters}}. The probability distribution of the statistic, though, may have unknown parameters. Consider now a function of the unknown parameter: an [[estimator]] is a statistic used to estimate such function. Commonly used estimators include [[sample mean]], unbiased [[sample variance]] and [[sample covariance]]. A random variable that is a function of the random sample and of the unknown parameter, but whose probability distribution ''does not depend on the unknown parameter'' is called a [[pivotal quantity]] or pivot. Widely used pivots include the [[z-score]], the [[Chi-squared distribution#Applications|chi square statistic]] and Student's [[Student's t-distribution#How the t-distribution arises|t-value]]. Between two estimators of a given parameter, the one with lower [[mean squared error]] is said to be more [[Efficient estimator|efficient]]. Furthermore, an estimator is said to be [[Unbiased estimator|unbiased]] if its [[expected value]] is equal to the [[true value]] of the unknown parameter being estimated, and asymptotically unbiased if its expected value converges at the [[Limit (mathematics)|limit]] to the true value of such parameter. Other desirable properties for estimators include: [[UMVUE]] estimators that have the lowest variance for all possible values of the parameter to be estimated (this is usually an easier property to verify than efficiency) and [[consistent estimator]]s which [[converges in probability]] to the true value of such parameter. This still leaves the question of how to obtain estimators in a given situation and carry the computation, several methods have been proposed: the [[method of moments (statistics)|method of moments]], the [[maximum likelihood]] method, the [[least squares]] method and the more recent method of [[estimating equations]]. Summary: Please note that all contributions to Christianpedia may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here. You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Christianpedia:Copyrights for details). Do not submit copyrighted work without permission! Cancel Editing help (opens in new window) Discuss this page