COVID-19 Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.Anti-spam check. Do not fill this in! === Immunopathology === [[File:Fimmu-11-579250-g003.jpg|thumb|Key components of the [[Adaptive immune system|adaptive immune response]] to SARS-CoV-2]] Although SARS-CoV-2 has a tropism for ACE2-expressing epithelial cells of the respiratory tract, people with severe COVID‑19 have symptoms of systemic hyperinflammation. Clinical laboratory findings<!-- Spellings in this paragraph have been meticulously compared link-by-link; if you spot an error, please correct the other article first. --> of elevated [[Interleukin 2|IL{{nbh}}2]], [[Interleukin 7|IL{{nbh}}7]], [[Interleukin 6|IL{{nbh}}6]], [[granulocyte-macrophage colony-stimulating factor]] (GM{{nbh}}CSF), [[CXCL10|interferon gamma-induced protein{{spaces}}10]] (IP{{nbh}}10), [[Monocyte chemoattractant protein-1|monocyte chemoattractant protein{{spaces}}1]] (MCP1), [[CCL3|macrophage inflammatory protein 1{{nbh}}alpha]] (MIP{{nbh}}1{{nbh}}alpha), and [[tumour necrosis factor]] (TNF{{nbh}}α) indicative of [[cytokine release syndrome]] (CRS) suggest an underlying immunopathology.<ref name="Huang24Jan2020" /> [[Interferon-alpha|Interferon alpha]] plays a complex, Janus-faced role in the pathogenesis of COVID-19. Although it promotes the elimination of virus-infected cells, it also upregulates the expression of ACE-2, thereby facilitating the SARS-Cov2 virus to enter cells and to replicate.<ref>{{#invoke:cite journal ||last1=Ziegler |first1=CGK |last2=Allon |first2=SJ |last3=Nyquist |first3=SK |last4=Mbano |first4=IM |last5=Miao |first5=VN |last6=Tzouanas |first6=CN |last7=Cao |first7=Y |last8=Yousif |first8=AS |last9=Bals |first9=J |last10=Hauser |first10=BM |last11=Feldman |first11=J |last12=Muus |first12=C |last13=Wadsworth |first13=MH |last14=Kazer |first14=SW |last15=Hughes |first15=TK |last16=Doran |first16=B |last17=Gatter |first17=GJ |last18=Vukovic |first18=M |last19=Taliaferro |first19=F |last20=Mead |first20=BE |last21=Guo |first21=Z |last22=Wang |first22=JP |last23=Gras |first23=D |last24=Plaisant |first24=M |last25=Ansari |first25=M |last26=Angelidis |first26=I |last27=Adler |first27=H |last28=Sucre |first28=JMS |last29=Taylor |first29=CJ |last30=Lin |first30=B |last31=Waghray |first31=A |last32=Mitsialis |first32=V |last33=Dwyer |first33=DF |last34=Buchheit |first34=KM |last35=Boyce |first35=JA |last36=Barrett |first36=NA |last37=Laidlaw |first37=TM |last38=Carroll |first38=SL |last39=Colonna |first39=L |last40=Tkachev |first40=V |last41=Peterson |first41=CW |last42=Yu |first42=A |last43=Zheng |first43=HB |last44=Gideon |first44=HP |last45=Winchell |first45=CG |last46=Lin |first46=PL |last47=Bingle |first47=CD |last48=Snapper |first48=SB |last49=Kropski |first49=JA |last50=Theis |first50=FJ |last51=Schiller |first51=HB |last52=Zaragosi |first52=LE |last53=Barbry |first53=P |last54=Leslie |first54=A |last55=Kiem |first55=HP |last56=Flynn |first56=JL |last57=Fortune |first57=SM |last58=Berger |first58=B |last59=Finberg |first59=RW |last60=Kean |first60=LS |last61=Garber |first61=M |last62=Schmidt |first62=AG |last63=Lingwood |first63=D |last64=Shalek |first64=AK |last65=Ordovas-Montanes |first65=J |title=SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. |journal=Cell |series=HCA Lung Biological Network |date=28 May 2020 |volume=181 |issue=5 |pages=1016–1035.e19 |doi=10.1016/j.cell.2020.04.035 |pmid=32413319|pmc=7252096 }}</ref><ref>{{#invoke:cite journal ||last1=Sajuthi |first1=SP |last2=DeFord |first2=P |last3=Li |first3=Y |last4=Jackson |first4=ND |last5=Montgomery |first5=MT |last6=Everman |first6=JL |last7=Rios |first7=CL |last8=Pruesse |first8=E |last9=Nolin |first9=JD |last10=Plender |first10=EG |last11=Wechsler |first11=ME |last12=Mak |first12=ACY |last13=Eng |first13=C |last14=Salazar |first14=S |last15=Medina |first15=V |last16=Wohlford |first16=EM |last17=Huntsman |first17=S |last18=Nickerson |first18=DA |last19=Germer |first19=S |last20=Zody |first20=MC |last21=Abecasis |first21=G |last22=Kang |first22=HM |last23=Rice |first23=KM |last24=Kumar |first24=R |last25=Oh |first25=S |last26=Rodriguez-Santana |first26=J |last27=Burchard |first27=EG |last28=Seibold |first28=MA |title=Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium. |journal=Nature Communications |date=12 October 2020 |volume=11 |issue=1 |pages=5139 |doi=10.1038/s41467-020-18781-2 |pmid=33046696|pmc=7550582 |bibcode=2020NatCo..11.5139S }}</ref> A competition of negative feedback loops (via protective effects of interferon alpha) and positive feedback loops (via upregulation of ACE-2) is assumed to determine the fate of patients suffering from COVID-19.<ref>{{#invoke:cite journal ||last1=Tretter |first1=F |last2=Peters |first2=EMJ |last3=Sturmberg |first3=J |last4=Bennett |first4=J |last5=Voit |first5=E |last6=Dietrich |first6=JW |last7=Smith |first7=G |last8=Weckwerth |first8=W |last9=Grossman |first9=Z |last10=Wolkenhauer |first10=O |last11=Marcum |first11=JA |title=Perspectives of (/memorandum for) systems thinking on COVID-19 pandemic and pathology. |journal=Journal of Evaluation in Clinical Practice |date=28 September 2022 |volume=29 |issue=3 |pages=415–429 |doi=10.1111/jep.13772 |pmid=36168893|pmc=9538129 |s2cid=252566067 }}</ref> Additionally, people with COVID‑19 and [[acute respiratory distress syndrome]] (ARDS) have classical [[Serum (blood)|serum]] [[Biomarker (medicine)|biomarkers]] of CRS, including elevated [[C-reactive protein]] (CRP), [[lactate dehydrogenase]] (LDH), [[D-dimer]], and [[ferritin]].<ref>{{#invoke:cite journal || vauthors = Zhang C, Wu Z, Li JW, Zhao H, Wang GQ | title = Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality | journal = International Journal of Antimicrobial Agents | volume = 55 | issue = 5 | pages = 105954 | date = May 2020 | pmid = 32234467 | pmc = 7118634 | doi = 10.1016/j.ijantimicag.2020.105954 }}</ref> Systemic inflammation results in [[vasodilation]], allowing inflammatory lymphocytic and monocytic infiltration of the lung and the heart. In particular, pathogenic GM-CSF-secreting [[T cell]]s were shown to correlate with the recruitment of inflammatory IL-6-secreting [[monocyte]]s and severe lung pathology in people with COVID‑19.<ref>{{#invoke:cite journal || vauthors = Gómez-Rial J, Rivero-Calle I, Salas A, Martinón-Torres F | title = Role of Monocytes/Macrophages in Covid-19 Pathogenesis: Implications for Therapy | journal = Infection and Drug Resistance | volume = 13 | pages = 2485–2493 | year = 2020 | pmid = 32801787 | pmc = 7383015 | doi = 10.2147/IDR.S258639 | doi-access = free | title-link = doi }}</ref> Lymphocytic infiltrates have also been reported at autopsy.<ref name="Cureus" /> Summary: Please note that all contributions to Christianpedia may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here. You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Christianpedia:Copyrights for details). Do not submit copyrighted work without permission! Cancel Editing help (opens in new window) Discuss this page