Expected value Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.Anti-spam check. Do not fill this in! ==Expected values of common distributions== The following table gives the expected values of some commonly occurring [[probability distribution]]s. The third column gives the expected values both in the form immediately given by the definition, as well as in the simplified form obtained by computation therefrom. The details of these computations, which are not always straightforward, can be found in the indicated references. {| class="wikitable" !Distribution !Notation !Mean E(X) |- |[[Bernoulli distribution|Bernoulli]]{{sfnm|1a1=Casella|1a2=Berger|1y=2001|1p=89|2a1=Ross|2y=2019|2loc=Example 2.16}} |<math>X \sim~ b(1,p)</math> |<math>0\cdot(1-p)+1\cdot p=p</math> |- |[[Binomial distribution|Binomial]]{{sfnm|1a1=Casella|1a2=Berger|1y=2001|1loc=Example 2.2.3|2a1=Ross|2y=2019|2loc=Example 2.17}} |<math>X \sim B(n,p)</math> |<math>\sum_{i=0}^n i{n\choose i}p^i(1-p)^{n-i}=np</math> |- |[[Poisson distribution|Poisson]]{{sfnm|1a1=Billingsley|1y=1995|1loc=Example 21.4|2a1=Casella|2a2=Berger|2y=2001|2p=92|3a1=Ross|3y=2019|3loc=Example 2.19}} |<math>X \sim \mathrm{Po}(\lambda)</math> |<math>\sum_{i=0}^\infty \frac{ie^{-\lambda}\lambda^i}{i!}=\lambda</math> |- |[[Geometric distribution|Geometric]]{{sfnm|1a1=Casella|1a2=Berger|1y=2001|1p=97|2a1=Ross|2y=2019|2loc=Example 2.18}} |<math>X \sim \mathrm{Geometric}(p)</math> |<math>\sum_{i=1}^\infty ip(1-p)^{i-1}=\frac{1}{p}</math> |- |[[Uniform distribution (continuous)|Uniform]]{{sfnm|1a1=Casella|1a2=Berger|1y=2001|1p=99|2a1=Ross|2y=2019|2loc=Example 2.20}} |<math>X\sim U(a,b)</math> |<math>\int_a^b \frac{x}{b-a}\,dx=\frac{a+b}{2}</math> |- |[[Exponential distribution|Exponential]]{{sfnm|1a1=Billingsley|1y=1995|1loc=Example 21.3|2a1=Casella|2a2=Berger|2y=2001|2loc=Example 2.2.2|3a1=Ross|3y=2019|3loc=Example 2.21}} |<math>X\sim \exp(\lambda)</math> |<math>\int_0^\infty \lambda xe^{-\lambda x}\,dx=\frac{1}{\lambda}</math> |- |[[Normal distribution|Normal]]{{sfnm|1a1=Casella|1a2=Berger|1y=2001|1p=103|2a1=Ross|2y=2019|2loc=Example 2.22}} |<math>X\sim N(\mu,\sigma^2)</math> |<math>\frac{1}{\sqrt{2\pi\sigma^2}}\int_{-\infty}^\infty xe^{-(x-\mu)^2/2\sigma^2}\,dx=\mu</math> |- |[[Standard normal|Standard Normal]]{{sfnm|1a1=Billingsley|1y=1995|1loc=Example 21.1|2a1=Casella|2a2=Berger|2y=2001|2p=103}} |<math>X\sim N(0,1)</math> |<math>\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty xe^{-x^2/2}\,dx=0</math> |- |[[Pareto distribution|Pareto]]{{sfnm|1a1=Johnson|1a2=Kotz|1a3=Balakrishnan|1y=1994|1loc=Chapter 20}} |<math>X\sim \mathrm{Par}(\alpha, k)</math> |<math>\int_k^\infty\alpha k^\alpha x^{-\alpha}\,dx=\begin{cases}\frac{\alpha k}{\alpha-1}&\alpha>1\\ \infty&0 \leq \alpha \leq 1.\end{cases}</math> |- |[[Cauchy distribution|Cauchy]]{{sfnm|1a1=Feller|1y=1971|1loc=Section II.4}} |<math>X\sim \mathrm{Cauchy}(x_0,\gamma)</math> |<math>\frac{1}{\pi}\int_{-\infty}^\infty \frac{\gamma x}{(x - x_0)^2 + \gamma^2}\,dx</math> is [[indeterminate form|undefined]] |} Summary: Please note that all contributions to Christianpedia may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here. You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Christianpedia:Copyrights for details). Do not submit copyrighted work without permission! Cancel Editing help (opens in new window) Discuss this page